Goto

Collaborating Authors

 Coleman County


AraSpider: Democratizing Arabic-to-SQL

arXiv.org Artificial Intelligence

This study presents AraSpider, the first Arabic version of the Spider dataset, aimed at improving natural language processing (NLP) in the Arabic-speaking community. Four multilingual translation models were tested for their effectiveness in translating English to Arabic. Additionally, two models were assessed for their ability to generate SQL queries from Arabic text. The results showed that using back translation significantly improved the performance of both ChatGPT 3.5 and SQLCoder models, which are considered top performers on the Spider dataset. Notably, ChatGPT 3.5 demonstrated high-quality translation, while SQLCoder excelled in text-to-SQL tasks. The study underscores the importance of incorporating contextual schema and employing back translation strategies to enhance model performance in Arabic NLP tasks. Moreover, the provision of detailed methodologies for reproducibility and translation of the dataset into other languages highlights the research's commitment to promoting transparency and collaborative knowledge sharing in the field. Overall, these contributions advance NLP research, empower Arabic-speaking researchers, and enrich the global discourse on language comprehension and database interrogation.


Survey of Action Recognition, Spotting and Spatio-Temporal Localization in Soccer -- Current Trends and Research Perspectives

arXiv.org Artificial Intelligence

Action scene understanding in soccer is a challenging task due to the complex and dynamic nature of the game, as well as the interactions between players. This article provides a comprehensive overview of this task divided into action recognition, spotting, and spatio-temporal action localization, with a particular emphasis on the modalities used and multimodal methods. We explore the publicly available data sources and metrics used to evaluate models' performance. The article reviews recent state-of-the-art methods that leverage deep learning techniques and traditional methods. We focus on multimodal methods, which integrate information from multiple sources, such as video and audio data, and also those that represent one source in various ways. The advantages and limitations of methods are discussed, along with their potential for improving the accuracy and robustness of models. Finally, the article highlights some of the open research questions and future directions in the field of soccer action recognition, including the potential for multimodal methods to advance this field. Overall, this survey provides a valuable resource for researchers interested in the field of action scene understanding in soccer.


Comparative Analysis of Deep-Fake Algorithms

arXiv.org Artificial Intelligence

Due to the widespread use of smartphones with high-quality digital cameras and easy access to a wide range of software apps for recording, editing, and sharing videos and images, as well as the deep learning AI platforms, a new phenomenon of 'faking' videos has emerged. Deepfake algorithms can create fake images and videos that are virtually indistinguishable from authentic ones. Therefore, technologies that can detect and assess the integrity of digital visual media are crucial. Deepfakes, also known as deep learning-based fake videos, have become a major concern in recent years due to their ability to manipulate and alter images and videos in a way that is virtually indistinguishable from the original. These deepfake videos can be used for malicious purposes such as spreading misinformation, impersonating individuals, and creating fake news. Deepfake detection technologies use various approaches such as facial recognition, motion analysis, and audio-visual synchronization to identify and flag fake videos. However, the rapid advancement of deepfake technologies has made it increasingly difficult to detect these videos with high accuracy. In this paper, we aim to provide a comprehensive review of the current state of deepfake creation and detection technologies. We examine the various deep learning-based approaches used for creating deepfakes, as well as the techniques used for detecting them. Additionally, we analyze the limitations and challenges of current deepfake detection methods and discuss future research directions in this field. Overall, the paper highlights the importance of continued research and development in deepfake detection technologies in order to combat the negative impact of deepfakes on society and ensure the integrity of digital visual media.


Interpretability from a new lens: Integrating Stratification and Domain knowledge for Biomedical Applications

arXiv.org Artificial Intelligence

The use of machine learning (ML) techniques in the biomedical field has become increasingly important, particularly with the large amounts of data generated by the aftermath of the COVID-19 pandemic. However, due to the complex nature of biomedical datasets and the use of black-box ML models, a lack of trust and adoption by domain experts can arise. In response, interpretable ML (IML) approaches have been developed, but the curse of dimensionality in biomedical datasets can lead to model instability. This paper proposes a novel computational strategy for the stratification of biomedical problem datasets into k-fold cross-validation (CVs) and integrating domain knowledge interpretation techniques embedded into the current state-of-the-art IML frameworks. This approach can improve model stability, establish trust, and provide explanations for outcomes generated by trained IML models. Specifically, the model outcome, such as aggregated feature weight importance, can be linked to further domain knowledge interpretations using techniques like pathway functional enrichment, drug targeting, and repurposing databases. Additionally, involving end-users and clinicians in focus group discussions before and after the choice of IML framework can help guide testable hypotheses, improve performance metrics, and build trustworthy and usable IML solutions in the biomedical field. Overall, this study highlights the potential of combining advanced computational techniques with domain knowledge interpretation to enhance the effectiveness of IML solutions in the context of complex biomedical datasets.


A Survey on Actionable Knowledge

arXiv.org Artificial Intelligence

Actionable Knowledge Discovery (AKD) is a crucial aspect of data mining that is gaining popularity and being applied in a wide range of domains. This is because AKD can extract valuable insights and information, also known as knowledge, from large datasets. The goal of this paper is to examine different research studies that focus on various domains and have different objectives. The paper will review and discuss the methods used in these studies in detail. AKD is a process of identifying and extracting actionable insights from data, which can be used to make informed decisions and improve business outcomes. It is a powerful tool for uncovering patterns and trends in data that can be used for various applications such as customer relationship management, marketing, and fraud detection. The research studies reviewed in this paper will explore different techniques and approaches for AKD in different domains, such as healthcare, finance, and telecommunications. The paper will provide a thorough analysis of the current state of AKD in the field and will review the main methods used by various research studies. Additionally, the paper will evaluate the advantages and disadvantages of each method and will discuss any novel or new solutions presented in the field. Overall, this paper aims to provide a comprehensive overview of the methods and techniques used in AKD and the impact they have on different domains.


Artificial intelligence sees more funding, but needs more people and better data

#artificialintelligence

The state of artificial intelligence is promising, and it is increasingly ready for real-life enterprises. But there are shortages of talent, lack of diversity in the field, and concerns about the handling the data that fuels ever-more-sophisticated algorithms. These are some of the observations of Nathan Benaich and Ian Hogarth, prominent investors in artificial intelligence, who released their fourth annual and densely packed "State of AI" report reviewing developments in the field over the past year. While the report focuses on AI academia and specific advancements in medicine and other areas, there are important developments raised for those seeking to leverage AI and machine learning to move forward in building intelligent enterprises. "The under-resourced AI-alignment efforts from key organizations who are advancing the overall field of AI, as well as concerns about datasets used to train AI models and bias in model evaluation benchmarks, raises important questions about how best to chart the progress of AI systems with rapidly advancing capabilities," Benaich and Hogarth state.


Artificial intelligence sees more funding, but needs more people and better data

ZDNet

The state of artificial intelligence is promising, and it is increasingly ready for real-life enterprises. But there are shortages of talent, lack of diversity in the field, and concerns about the handling the data that fuels ever-more-sophisticated algorithms. These are some of the observations of Nathan Benaich and Ian Hogarth, prominent investors in artificial intelligence, who released their fourth annual and densely packed "State of AI" report reviewing developments in the field over the past year. While the report focuses on AI academia and specific advancements in medicine and other areas, there are important developments raised for those seeking to leverage AI and machine learning to move forward in building intelligent enterprises. "The under-resourced AI-alignment efforts from key organizations who are advancing the overall field of AI, as well as concerns about datasets used to train AI models and bias in model evaluation benchmarks, raises important questions about how best to chart the progress of AI systems with rapidly advancing capabilities," Benaich and Hogarth state.


Abstracting & Indexing – Artificial Intelligence – Journal – Elsevier

#artificialintelligence

The journal of Artificial Intelligence (AIJ) welcomes papers on broad aspects of AI that constitute advances in the overall field including, but not limited …


Detecting Deception in Political Debates Using Acoustic and Textual Features

arXiv.org Artificial Intelligence

ABSTRACT We present work on deception detection, where, given a spoken claim, we aim to predict its factuality. While previous work in the speech community has relied on recordings from staged setups where people were asked to tell the truth or to lie and their statements were recorded, here we use real-world political debates. Thanks to the efforts of fact-checking organizations, it is possible to obtain annotations for statements in the context of a political discourse as true, half-true, or false. Lab, which was limited to text, we performed alignment to the corresponding videos, thus producing a multimodal dataset. We further developed a multimodal deep-learning architecture for the task of deception detection, which yielded sizable improvements over the state of the art for the CLEF-2018 Lab task 2. Our experiments show that the use of the acoustic signal consistently helped to improve the performance compared to using textual and metadata features only, based on several different evaluation measures. We release the new dataset to the research community, hoping to help advance the overall field of multimodal deception detection.


Driver Identification via the Steering Wheel

arXiv.org Machine Learning

Driver identification has emerged as a vital research field, where both practitioners and researchers investigate the potential of driver identification to enable a personalized driving experience. Within recent years, a selection of studies have reported that individuals could be perfectly identified based on their driving behavior under controlled conditions. However, research investigating the potential of driver identification under naturalistic conditions claim accuracies only marginally higher than random guess. The paper at hand provides a comprehensive summary of the recent work, highlighting the main discrepancies in the design of the machine learning approaches, primarily the window length parameter that was considered. Key findings further indicate that the longitudinal vehicle control information is particularly useful for driver identification, leaving the research gap on the extent to which the lateral vehicle control can be used for reliable identification. Building upon existing work, we provide a novel approach for the design of the window length parameter that provides evidence that reliable driver identification can be achieved with data limited to the steering wheel only. The results and insights in this paper are based on data collected from the largest naturalistic driving study conducted in this field. Overall, a neural network based on GRUs was found to provide better identification performance than traditional methods, increasing the prediction accuracy from under 15\% to over 65\% for 15 drivers. When leveraging the full field study dataset, comprising 72 drivers, the accuracy of identification prediction of the approach improved a random guess approach by a factor of 25.